III SEMANA DO CONFIECIMENTO

Universidade e comunidade em transformação

3 A 7 DE OUTUBRO

Marque a opção do tipo de trabalho que está inscrevendo:

(X) Resumo

() Relato de Caso

Extração de Beta-glucanas em cultivares de aveia brança (Avena sativa)

AUTOR PRINCIPAL: Caroline Balensiefer Vicenzi

CO-AUTORES: Natália Cristina Cavalli, Tatiana Oro, Luiz Carlos Gutkoski

ORIENTADOR: Luiz Carlos Gutkoski

UNIVERSIDADE: Universidade de Passo Fundo

INTRODUÇÃO

A aveia branca possui composição química com aporte energético e nutricional equilibrado, o que a torna um dos cereais mais cultivados para a alimentação humana e animal. Uma das frações de fibra alimentar solúvel presente na aveia e considerada de grande importância para a saúde humana é a das beta-glucanas, polímeros encontrados na parede celular dos principais cereais (WOOD, 2007). As beta-glucanas possuem funcionalidades tecnológicas relacionadas às suas propriedades físico-químicas, como solubilidade, poder de intumescimento, viscosidade, formação de gel e propriedades de ligação com outros compostos. Além disso, o enriquecimento de alimentos com concentrados e isolados de beta-glucanas proporciona apelo diferenciado devido ao alto teor de fibras (MOURA, 2011). Considerando as propriedades mencionadas, este trabalho tem como objetivo a caracterização de cultivares de aveia branca e posterior extração das beta-glucanas visando aplicação futura em alimentos.

DESENVOLVIMENTO:

Grãos de aveia (*Avena sativa* L.) das cultivares UPFA Ouro, UPFA Gaudéria e Tarimba, cedidas pela Faculdade de Agronomia e Medicina Veterinária foram caracterizadas quanto às suas propriedades físicas através da determinação do peso hectolitro, massa de mil grãos (BRASIL, 2009) e rendimento industrial através do método descrito por Floss *et. al.* (2002). A composição química foi realizada em aparelho de reflectância infravermelho proximal (NIR), tendo como resultados o teor de umidade, lipídios, carboidratos, cinzas, proteínas e fibra alimentar total (solúvel e insolúvel).

A extração das beta-glucanas foi realizada pelo método descrito por Moura (2011), com adaptações.

A significância dos dados obtidos foi testada pela análise de variância (Anova) a 0,05 de probabilidade de erro e, nos modelos significativos, as médias comparadas

Universidade e comunidade em transformação

entre si pelo teste de Tukey a 95% de intervalo de confiança pelo programa SASM – Agri versão 8.2. Todas as análises foram realizadas em triplicata com exceção da outubro

os resultados das características físicas das cultivares estudadas. O Peso Hectolitro (PH) obteve variação de 41,03 até 49,55 (kg/hL) entre as cultivares. De acordo com a legislação brasileira o PH deve ser igual ou superior a 50 (kg/hL), sendo utilizado como padrão pelo Ministério da Agricultura (CBPA, 2003). A Massa de Mil Graos variou de 28,06 e 35,26 g. O Rendimento Industrial obteve variação entre 53,27% e 62,43%. Na composição guímica (Tabela 2) das cultivares estudadas, pôde ser observado que houve diferenças significativas (p<0,05) apenas em relação ao teor de lipídeos e fibra solúvel. A composição química encontrada no grão de aveia pode apresentar diferenças entre cultivares, e até mesmo no próprio cultivar, quando o cultivo é realizado em locais distintos. A qualidade dos grãos de aveia, tanto nas características físicas quanto na composição química é resultado da interação de fatores que a cultura sofre no campo, condições de solo, manejo, cultivar, bem como as operações de colheita, armazenamento e moagem. Utilizando-se o método de extração de Moura (2011), o presente trabalho, obteve os dados relacionados na Tabela 3, onde o maior rendimento obtido foi de 6,1062% para a cultivar UPFA Ouro, sendo que para Moura (2011) o rendimento obtido ficou em torno de 8,24% para a cultivar IAC7. As diferenças de rendimento devem-se as cultivares serem diferentes e devido algumas adaptações do método. Sendo que para Wood (2007) é difícil uma comparação entre os dados a respeito de extração de βglucanas na literatura, pois esse é dependente de muitos fatores relacionados à variedade, ao ano e as condições de cultivo. Para as indústrias que utilizam aveia como ingrediente, seria interessante uma variabilidade pequena, para que pudessem manter constância tanto na composição química, como no produto final.

CONSIDERAÇÕES FINAIS:

Os resultados obtidos neste trabalho foram de caráter satisfatório, sendo que a continuidade proposta será a de aplicação desta fibra, da cultivar de destaque, em produtos alimentares inovadores. Considerando a vasta gama de funcionalidades tecnológicas acarretada pelas beta-glucanas, proporcionando um produto funcional diferenciado.

REFERÊNCIAS

BRASIL, Secretaria Nacional de Defesa Agropecuária. Regras para análise de sementes. Brasília: MAPA, 2009, 365 p.

CBPA. Indicações técnicas para a cultura da aveia. Passo Fundo: UPF, 2003. 87p.

FLOSS, E. L.; HAUBERT, S. A.; ZANATTA, F. S. Rendimento corrigido pela qualidade industrial do grão de aveia. In: REUNIÃO DA COMISSÃO BRASILEIRA DE AVEIA, 2002, Passo Fundo. Resultados Experimentais. Passo Fundo: UPF, 2002. p. 553-558.

MOURA, F. A. Efeito do tratamento oxidativo sobre as propriedades da beta-glicana e aplicação em pães de queijo. 2010. 61 p. Dissertação (Mestrado em Ciência e Tecnologia Agroindustrial), Universidade Federal de Pelotas, Pelotas, 2011.

WOOD, P. J. Cereal β-glucans in diet and health. **Journal of Cereal Science**, v. 46, 2007

NÚMERO DA APROVAÇÃO CEP OU CEUA (para trabalhos de pesquisa):

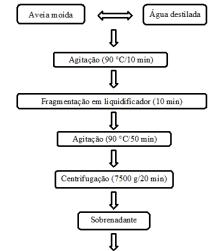
III SEMANA DO COMENDO LE CIMIENTO

Universidade e comunidade em transformação

3 A 7 DE OUTUBRO DE 2016

	Caracterização Física			
	Peso Hectolitro (kg/hL)	Massa de Mil Grãos (g)	Rendimento Industrial (%)	
UPFA Ouro	49,55° ± 0,606	35,26° ± 0,642	62,43° ± 0,583	
UPFA Gaudéria	41,03 ^b ± 0,992	33,46 ^b ± 0,305	53,27 ^b ± 0,642	
Tarimba	45,78° ± 0,436	28,06° ± 0,945	56,84° ± 0,862	

Tabela 2. Composição química das cultivares de aveia.


	Composição química (%)			
COLUMN TO THE REAL PROPERTY.	Tarimba	UPFA Gaudéria	UPFA Ouro	
Cinzas	1,84° ± 0,450	1,86° ± 0,058	1,84° ± 0,041	
Proteínas	15,85° ± 0,701	16,23° ± 1,144	15,24° ± 0,496	
Lipídios	4,61 ^b ± 0,095	4,13° ± 0,249	$5,10^{a} \pm 0,131$	
/ Fibra Total	8,49° ± 0,104	8,68° ± 0,134	8,43° ± 0,059	
Fibra Insolúvel	5,84° ± 0,063	5,93° ± 0,080	$5,80^{a} \pm 0,035$	
Fibra Solúvel	$2,66^{ab} \pm 0,041$	2,74° ± 0,054	2,63 ^b ± 0,024	
Umidade	9,33°± 0,128	$9,13^a \pm 0,163$	9,41°±0,071	
Carboidratos	59,86° ± 0,633	59,95° ± 1,172	59,95° ± 0,527	

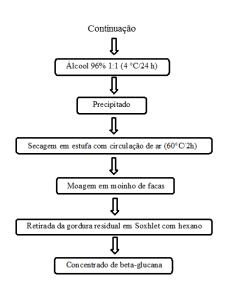

^{**} Letras diferentes na mesma linha, diferem estatisticamente (p < 0,05).

Tabela 3. Extração de beta-glucanas das cultivares.

Cultivares	Massa do concentrado (g)	Rendimento (%)
UPFA Ouro	4,8850	6,1062
UPFA Gaudéria	2,4331	3,0413
Tarimba	4,7528	5,9410

Figura 1. Fluxograma de extração das beta-glucanas

^{***}Resultados expressos como média de 3 determinações ± desvio padrão.