

Marque a opção do tipo de trabalho que está inscrevendo:

(X) Resumo

) Relato de Caso

OTIMIZAÇÃO DO PESO DE ESTRUTURAS EM ALUMÍNIO ATRAVÉS DO MÉTODO DO RECOZIMENTO SIMULADO

AUTOR PRINCIPAL: Rafael Teixeira Berno **CO-AUTORES:** Diego Badzinski Burlamaque

ORIENTADOR: Moacir Kripka, Dr.

UNIVERSIDADE: Universidade de Passo Fundo.

INTRODUÇÃO

A busca por melhores resultados orçamentários em construções é cada vez maior, sempre atendendo as normas, critérios de segurança e reduzindo custos. Treliças são estruturas usualmente executadas em madeira ou metal, com boa relação capacidade/peso, possibilitando vencer grandes vãos e com grande variedade estética, resultando em um vasto campo para aplicação de técnicas de otimização. Neste sentido , o estudo desenvolvido objetivou a otimização de treliças de alumínio, tomando por base trabalho anterior desenvolvido por KRIPKA, PRAVIA, DIAS e MEDEIROS (2013), alterando os perfis para perfis comerciais com finalidade estrutural. O método de otimização empregado, *Simulated Annealing*, trabalha com estratégias que buscam a obtenção do mínimo global, atendendo todas as restrições impostas.

DESENVOLVIMENTO:

A partir da pesquisa de uma variedade maior de perfis em alumínio disponíveis no mercado, com finalidade estrutural, diferentes dos perfis utilizados por KRIPKA, PRAVIA, DIAS e MEDEIROS (2013), encontraram-se os nove seguintes perfis em forma de dupla cantoneira, e suas características, expostos na Tabela 1 (ALCOA, 2015).

Na estrutura em questão, o objetivo era a minimização do peso das treliças, formulado da seguinte maneira:

Minimizar:

$$f(x) = W = \sum_{i=1}^{n} \gamma A_i L_i$$
 [Eq. 01]

Sujeito a:

$$\sigma_i \le \sigma_a$$
 [Eq. 02]

$$\lambda \le \lambda_{lim}$$
 [Eq. 03]

$$u_i \le u_a$$
 [Eq. 04]

$$A \in S = \{a_1, \dots, a_m\}$$
 [Eq. 05]

$$x^1 \le x_i \le x^u \tag{Eq. 06}$$

Onde na função objetivo, W é o peso total da treliça, e as variáveis de projeto são a área da seção transversal dos elementos (A) e as coordenadas dos nós da treliça (x). Ainda nesta mesma função, γ é o peso específico do material e L o comprimento do elemento, sendo n o número total de elementos. Em cada elemento tem-se como restrição que a tensão σ i em cada barra deve ser menor ou igual à tensão admissível do material (σ _a), sendo considerado ainda o índice de esbeltez máximo (λ _{lim}) para os elementos comprimidos e um deslocamento admissível (u_a) para cada nó da estrutura (adaptado de KRIPKA, PRAVIA, DIAS e MEDEIROS, 2013).

Considerou-se ainda que, a área da seção deve assumir valores discretos, a partir da lista m de novo perfis candidatos. Por fim, a última equação de restrição impõe a limitação para a variação de coordenadas dos nós.

O material escolhido foi o mantido como o alumínio liga 6351, têmpera T4, com as seguintes características (KRIPKA, PRAVIA, DIAS e MEDEIROS, 2013):

- Módulo de elasticidade longitudinal E = 70 GPa;
- Peso específico $\gamma = 27 \text{ kN/m}^3$;
- Tensão de escoamento $f_v = 130 MPa$;
- Tensão última $f_u = 220 MPa$;
- Índice de esbeltez máximo $\lambda_{lim} = 111$.

Através da utilização do software e metodologia de KRIPKA, PRAVIA, DIAS e MEDEIROS (2013), buscou-se a redução do peso da treliça de banzos paralelos do tipo Warren, para uma carga pontual (P) aplicada no centro da estrutura (Figura 1), com a utilização de 3 grupos compostos por 3 perfis cada.

Seguindo a denominação e a indicação de uso estrutural, do catálogo da ALCOA, a escolha dos perfis para cada grupo se deu pela limitação de carga de cada perfil. A escolha dos grupos e cargas limites de cada perfil está na Tabela 2.

A metodologia de otimização seguiu o método supracitado (Simulated Annealing), e a inserção de dados no software seguiu o manual do usuário.

CONSIDERAÇÕE S FINAIS:

Os resultados, expostos nas figuras 3, 4 e 5, apresentaram uma significativa redução de peso da estrutura. Para a otimização de treliças, a redução de peso pode ser obtida por diversas maneiras, não só pela alteração da seção, mas também pela geometria e tipologia da estrutura. Dentro destas restrições, o método adotado apresenta um bom desempenho, por possibilitar a obtenção dos mínimos globais ou de valores próximos destes.

REFERÊNCIAS

ALCOA. Catálogo de Perfis Stantard – Perfis Extrudados de Alumínio Alcoa (Ref: Fev/15). Disponível em: http://www.alcoa.com/brasil/pt/info_page/downloads.asp. Acesso em: 11 mai. 2015.

KRIPKA Moacir, PRAVIA Zacarias M. Chamberlain, DIAS Maiga Marques, MEDEIROS Guilherme Fleith. "Minimização do peso de treliças de alumínio pela otimização simultânea da seção transversal dos elementos e da geometria: análise numérica e validação experimental". REEC – Revista Eletrônica de Engenharia Civil, V. 7,n. 2, p. 16-23, 2013.

KRIPKA, M. "Discrete optimization of trusses by simulated annealing". J. Braz. Soc. Mech. Sci & Eng., v. 26, n. 2, p. 170-173, abr./jun. 2004.

ANEXOS

Figura 1: Estrutura inicial P 1.75m

Fonte: KRIPKA, PRAVIA, DIAS e MEDEIROS (2013).

Figura 2: Inserção de dados no software

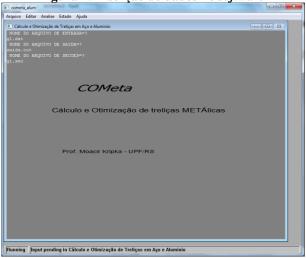


Figura 4: Grupo 2, com carga de 34,60 kN

TABELA 1: Características do novos perfis adotados			
PERFIL	Área (m²)	Inércia (m⁴)	
CT-957	222,53.10 ⁻⁶	6820,0.10 ⁻¹²	
CT-995	441,00.10 ⁻⁶	24280,0.10 ⁻¹²	
CT-445	566,12.10 ⁻⁶	30020,0.10 ⁻¹²	
CT-446	303,12.10 ⁻⁶	17320,0.10 ⁻¹²	
CT-802	466,48.10 ⁻⁶	61800,0.10 ⁻¹²	
CT-803	685,10.10 ⁻⁶	88740,0.10 ⁻¹²	
CT-833	385,44.10 ⁻⁶	34860,0.10 ⁻¹²	
CT-444	563,37.10 ⁻⁶	49220,0.10 ⁻¹²	
CT-836	729,73.10 ⁻⁶	61980,0.10 ⁻¹²	

Figura 3: Grupo 1, com carga de 32,75 kN

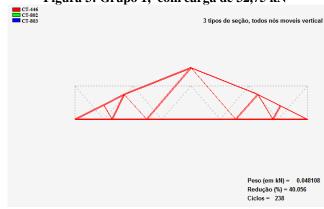


Figura 5: Grupo 3, com carga de 41,80 kN

	TABELA 2: Grupos e cargas limite	
	PERFIL	CARGA LIMITE
GRUPO 1	CT-957	16,5 kN
	CT-995	32,75 kN
	CT-445	42,0 kN
GRUPO 2	CT-446	22,5 kN
	CT-802	34,6 kN
	CT-803	50,85 kN
GRUPO 3	CT-833	10,65 kN
	CT-444	41,80 kN
	CT-836	54,15 kN