

RESUMO

NANOFILTRAÇÃO SEGUIDA DE DIÁLISE PARA OBTENÇÃO DE UM XAROPE DE LACTOSE

AUTOR PRINCIPAL:

Sandrini Slongo Fortuna

E-MAIL:

sandrinislongo@outlook.com

TRABALHO VINCULADO À BOLSA DE IC::

Não

CO-AUTORES:

Adriana Milani Vinicius Castoldi Vera Maria Rodrigues Creciana Endres Bruna Seguenka Alessandra Pezzini

ORIENTADOR:

Vandré Brião

ÁREA:

Ciências Agrárias

ÁREA DO CONHECIMENTO DO CNPQ:

Engenharia

UNIVERSIDADE:

Universidade de Passo Fundo

INTRODUÇÃO:

O soro lácteo, fração aquosa do leite separada durante a produção de queijos, é uma fonte rica de proteínas, lactose, gordura e sais. Por muitos anos a indústria de laticínios considerou o soro como um subproduto de baixo valor, atualmente, o soro é reconhecido pelo seu alto valor nutricional. A ultrafiltração (UF) é uma das técnicas mais utilizadas para recuperar as proteínas do soro (CPS), esse processo gera outro subproduto: o permeado da ultrafiltração, sendo um líquido rico em lactose e sais. Utiliza-se a nanofiltração (NF) seguida de diafiltração (DF) para concentração e purificação da lactose. A DF é um processo que combina a remoção de solutos com a adição de um novo solvente. Os concentrados de lactose são diafiltrados para diminuição do teor de sais monovalentes. O objetivo desse trabalho foi à obtenção de uma lactose concentrada e purificada (LCP), aplicando a NF seguida da DF, para a utilização do subproduto gerado na UF do soro evitando assim a geração de um novo resíduo.

METODOLOGIA:

O permeado da UF (matéria-prima) foi obtido do processo de produção do concentrado proteico de soro (CPS). Os experimentos foram realizados em uma unidade piloto (Figura 1) e foram divididos em duas etapas primeiro realizou-se a concentração e em seguida a diafiltração (purificação). A LCP foi elaborada partindo de um volume inicial de 70L de soro de leite, descartando o permeado e retornando o retido ao tanque, reduzindo este volume até 14L. Utilizou-se na concentração pressões de 2 MPa (20,0 bar) com vazão de recirculação de 2.900 L/h.Após operou-se a nanofiltração no modo de diafiltração. Adicionou-se ao concentrado 60L de água purificada por osmose inversa em duas bateladas de 30L e aplicou-se o mesmo processo e condições da concentração. O procedimento de DF foi repetido três vezes. Ao final do processo a LPC foi caracterizada quanto ao seu conteúdo de proteínas, lactose, cinzas e gordura.

RESULTADOS E DISCUSSÕES:

Obteve-se uma LCP com um teor de 90,1 % de Lactose, 4,54 % de sais, 4,73 % de proteína e 0,62 % de gordura (Tabela 1). Ao observar a Figura 2 (em anexo) verifica-se que a lactose teve um aumento de apenas 3 % comparando com o valor da matéria prima (MP) utilizada, que tinha 87,58 % de lactose. Os sais tiveram um pequeno aumento inicial, o que é normal devido a primeira etapa ser de concentração das moléculas. Após a aplicação das diálises para a diminuição do teor de sais monovalentes, os sais reduziram 32 %. Os teores de proteína e gordura não tiveram reduções consideráveis. Durante o processo de diafiltração acompanhou-se a remoção dos sais de ambas as correntes através da condutividade elétrica e a concentração de sólidos totais em °Brix. A Tabela 2 mostra que não houve uma expressiva redução da condutividade elétrica no retido da diafiltração 2 para a diafiltração 3, mostrando que a aplicação de mais uma etapa de diafiltração seria inútil. Isso pode ser explicado pelos fatores de redução de fluxo que impedem a passagem de um maior teor de minerais pela membrana. A Figura 3 (em anexo) mostra que o fluxo do permeado inicial (87,33 L.h-¹.m-²) durante o processo de concentração por nanofiltração da lactose decai ao decorrer do tempo, chegando ao final da última diafiltração com um fluxo de 50,77 L.h-¹.m-². Isso se deve ao fato de que quanto mais concentrado fica o retido, maior é a colmatação na membrana (fouling). A colmatação reduz a eficiência dos processos de separação que são afetados diretamente pelos fatores de redução de fluxo como a polarização por concentração e fouling.

CONCLUSÃO:

A nanofiltração aplicada para a concentração e desmineralização do permeado da UF elevou em apenas 3 % a lactose, mas reduziu 32 % dos sais. Esse seria o máximo de redução de sais que poderia se conseguir nesse processo observando que a aplicação de mais uma etapa de diafiltração seria inútil.

REFERÊNCIAS BIBLIOGRÁFICAS:

ATRA R., VATAI G., BEKASSY-MOLNAR E., BALINT A. Investigation of ultra-nanofiltration for utilization of whey protein and lactose. J. Food Eng., n. 67, p. 325- 332, 2005.

FERNANDEZ J., VEGA A., COCA J., ALLAN G. G. Sugar-cellulose composites VI. Economic evaluation of lactose production from cheese whey for use in paper. Journal of the Science of Food and Agriculture, INSS 12241231, 2002.

INSIRA ARQUIVO.IMAGEM - SE HOUVER:

Tabela 1: Caracterização do retido e do permeado nas diferentes etapas do processo

Tablia 1. Caracterização do resido e do permeda o nas arreferes empas do processo					
	Sais	Gordura	Proteína	Lactose	
	(%)	(%)	(%)	(%)	
Permeado da UF do soro (MP)	3,52	1,11	7,79	87,58	
76 % Concentrado Lactose (Retido)	6,67	0,49	5,28	87,56	
Diafiltração 1 (Retido)	6,55	0,54	4,96	87,95	
Diafiltração 2 (Retido)	6,36	0,57	4,77	88,30	
Diafiltração 3 (Retido) - LCP	4,54	0,62	4,73	90,11	
76 % Concentrado Lactose (Permeado)	41,18	15,18	30,36	13,28	
Diafiltração 1 (Permeado)	47,82	16,60	28,46	7,12	
Diafiltração 2 (Permeado)	43,75	17,12	29,35	9,78	
Diafiltração 3 (Permeado)	0,00	33,33	52,38	14,29	

Tabela 2: Análises de acompanhamento durante o processo de concentração e diafiltração por nanofiltração

diamitação por nanomitação					
Amostra	Condutividade	Brix			
Permeado da UF do soro (MP)	2359	5,9			
76 % Concentrado Lactose (Retido)	4480	12,7			
Diafiltração 1 (Retido)	2101	11,5			
Diafiltração 2 (Retido)	3302	11			
Diafiltração 3 (Retido) - LCP	3011	10,2			
76 % Concentrado Lactose (Permeado)	4480	0,1			
Diafiltração 1 (Permeado)	238,7	0,2			
Diafiltração 2 (Permeado)	164	0,1			
Diafiltração 3 (Permeado)	144 9	0			

Figura 1: Módulo de ultrafiltração

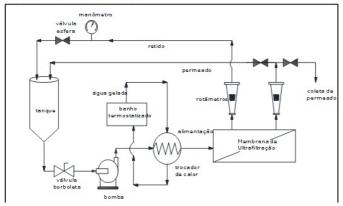


Figura 2: Caracterização do retido durante as etapas de produção de LCP

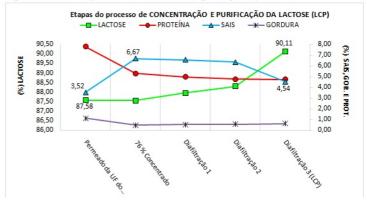
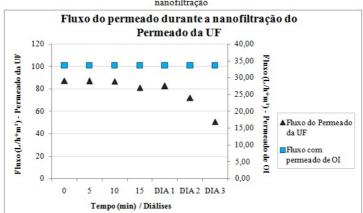



Figura 3: Fluxo do permeado durante o processo de concentração e diafiltração por nanofiltração

Assinatura do aluno Assinatura do orientador